

Where Dirt and Policy Meet: The Economics of Soil Carbon

Chris Hartley Amy King Angela Kong Bapu Vaitla Stephen A. Vosti

KEARNEYCenter For NaturalEnvironmentalFOUNDATIONResources Policy AnalysisIssues CenterFOUNDATION(CNRPA)(EIC)

Objectives

Introduce the Notion of Carbon Markets
Identify Key Economic Issues
Briefly Discuss Tools
Present Preliminary Results
Hear from You About Contracts for Soil Carbon Sequestration

Why A Carbon Market?

- Emissions Reductions

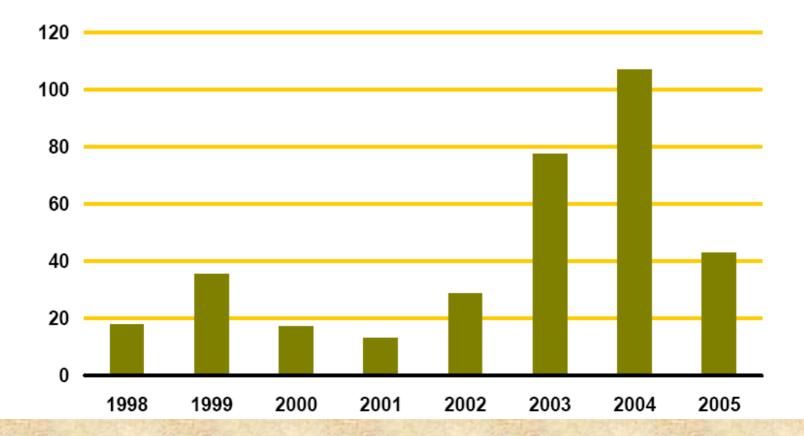
 Reduce CO2 and other GHG

 Efficient Allocation of Emissions

 Distribute the emissions efficiently across regions, countries, sectors, industries within sectors, and firms within industries
- Kyoto Protocol

- Took effect on February 16, 2005

What Is Traded?


- Allowance-Based Transactions
 - Trading of government-issued allowances to emit GHG
- Project-Based Transactions
 - Trading emissions credits generated by projects that reduce GHG emissions

Carbon Market Volume

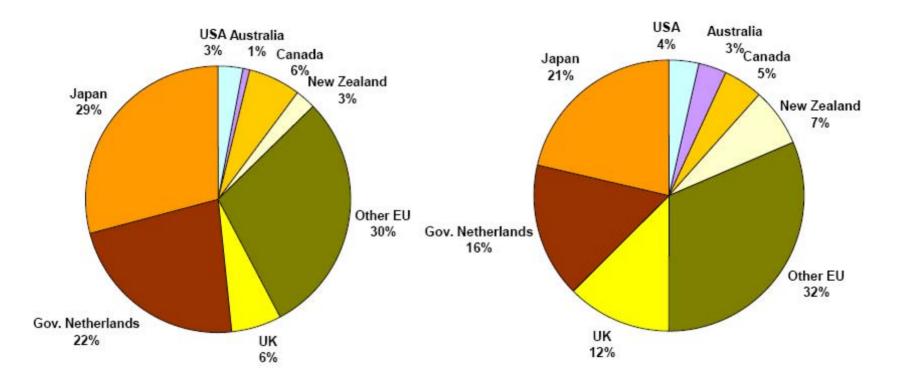
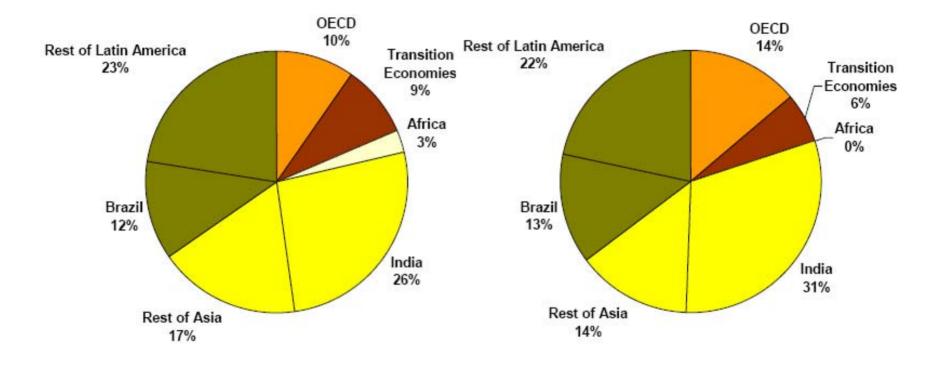
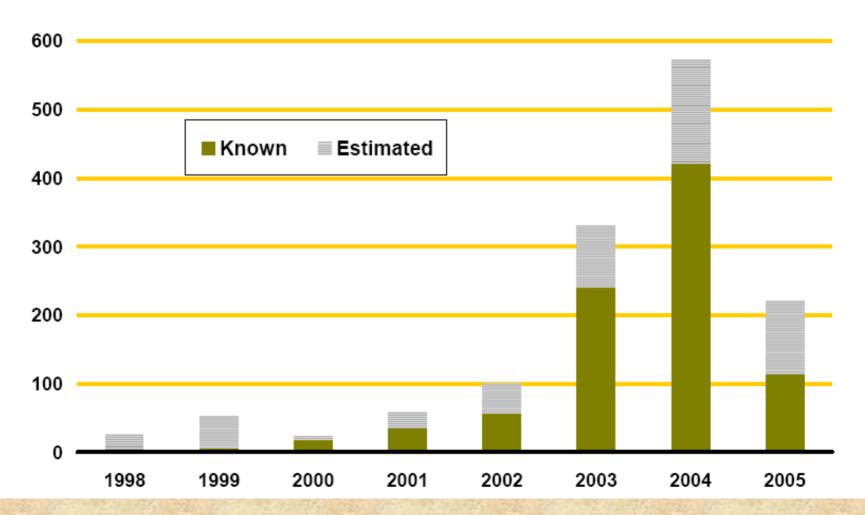

State and Trends of Carbon Market 2005

FIGURE 1: ANNUAL VOLUMES (million tCO₂e) OF PROJECT-BASED EMISSION REDUCTIONS TRADED (up to 2012 vintages)


Who's Buying?

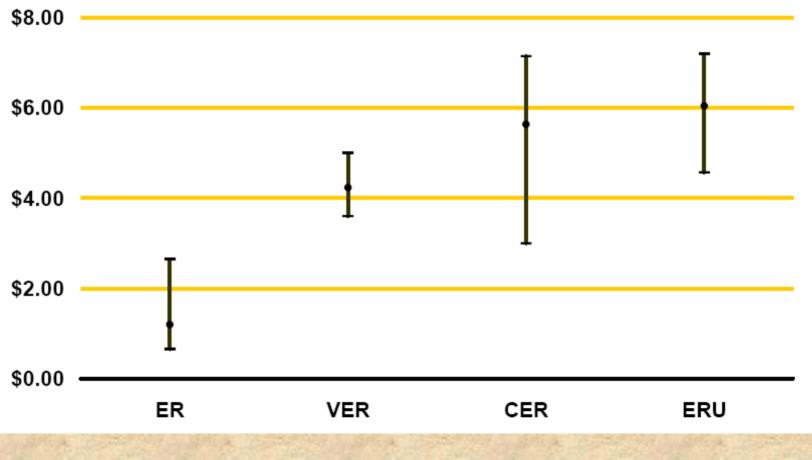
Jan. 2004 – April 2005

Who Is Selling?



Jan. 2004 – April 2005

How Big Is the Market?


FIGURE 6: TOTAL MARKET VALUE (ESTIMATE) PER YEAR in million U.S. dollars (nominal)

Prices Paid for Carbon

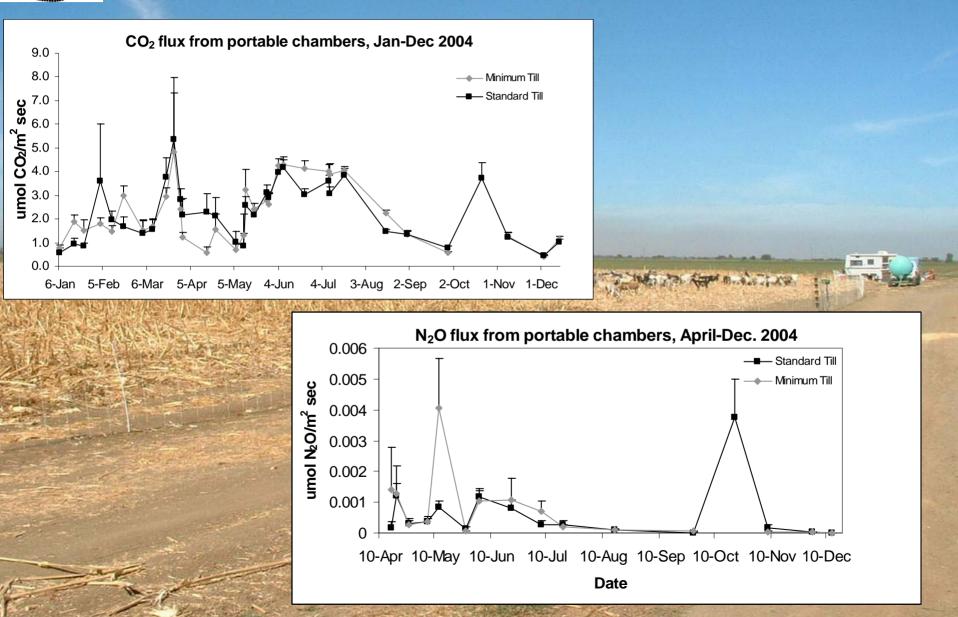
FIGURE 5: PRICES FOR NON-RETAIL PROJECT-BASED ERs January 2004 to April 2005 (in U.S.\$ per tCO₂e)

ER = Emission Reductions (projects); VER = Verified Emissions Reductions; CER = Certified Emissions Reductions; ERU = Emission Reduction Units

Key Economic Issues

Private Costs and Benefits - Level of profitability **Cash flow** Changes in production costs Change in farmers' time requirements Social Costs and Benefits - Types of costs; timing -Types of benefits; timing; beneficiaries

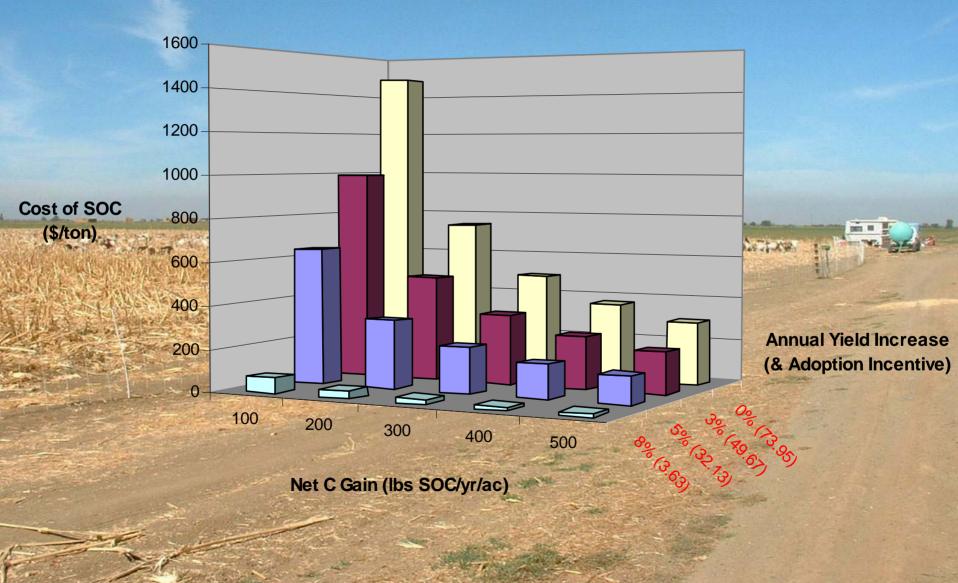
One Tool -- LUS Analysis


- Focus on Land Use Systems (LUS)
 - Multi-year duration
 - Different intermediate and end uses
- Estimate Economic Effects
 - Discounted streams of input <u>costs</u> and product <u>revenues</u>
 - Calculate economic <u>returns</u> to key factors of production
 - Land, labor
- Estimate the Environmental Effects
- Estimate the Sociocultural Effects
- Highlight Institutional Impediments to LUS
 Adoption

The Field 74 Carbon Sequestration Project

 Focus: Identify the impacts in a maizewheat system of reduced till vs.
 standard till on CO2 and N2O flux, croped yield, water quality and balance, and system profitability

CO2 and N2O flux



Yield and Profitability

Results to date - Yields declined sharply in year one RT yield → 3.64 tons/acre ST yield -> 5.32 tons/acre Manter Reprintation **Despite reduced operational costs in RT** system profits fell sharply • RT NPV/acre (7 years) -> \$1022 • ST NPV/acre (7 years) → \$1597

Costs of Additional Soil Carbon in Field 74

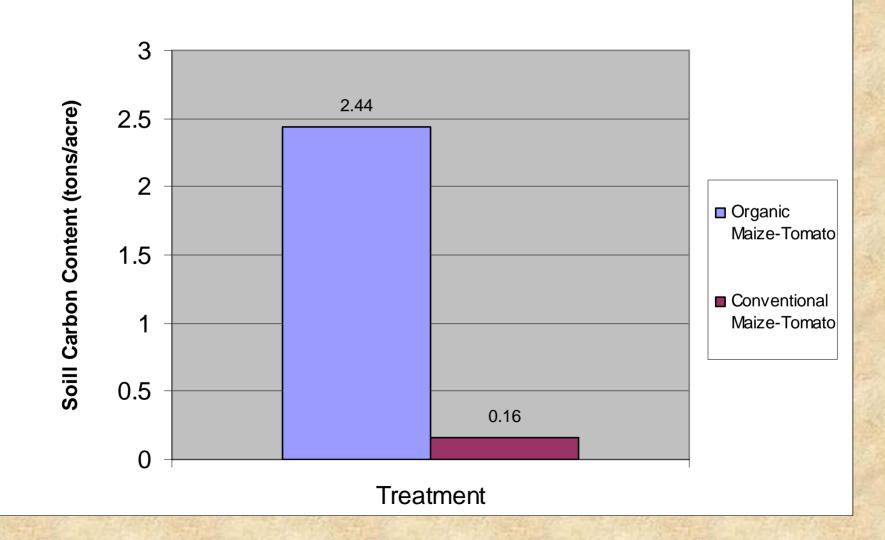
C Sequestration in LTRAS Organic vs. Conventional Maize-Tomato Systems

LUS	Even Years	Odd Years
Conventional maize- tomato (CMT)	fertilized irrigated corn	fertilized irrigated tomato
Organic maize-tomato (OMT)	winter legume / irrigated corn compost / no pesticides	winter legume / irrigated tomato compost / no pesticides

• <u>Focus</u>: Identify the effects of organic (vs. conventional) management of a maizetomato rotation over 9 years on soil organic carbon, crop yields and system profitability

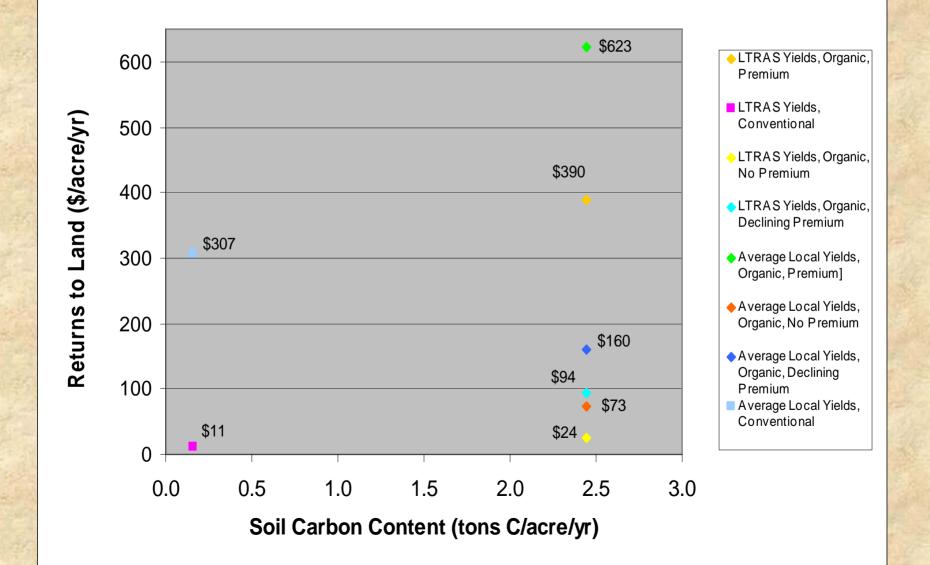
Crop Yields (tons/acre)

Year	1	2	3	4	5	6	7	8	9	Avg
						A.C.	5 19	S XC	24	PLAN AP
maize	5.84		4.64		4.64	En Sala	5.66		5.63	5.28
				art	1999					
al lan		WR TO S		N. S.	105 1	1	1.45		NR T	
	Plane -	12.07	27217	0F 4F		10.40	a second	07 E 4		10.02
tomato	1	12.97		25.15		10.46		27.54	Lange	19.03
	The state					AL CON			10.00	
	A Second					En line		M. C. S.	12	
						2 And	- Contractor		18 3	
maize	3.98	VETCA	3.02	No.	3.87	N. C. C.	3.29		2.39	3.31
38.22	記録の		S. Stall res			1200 34		目前に		公司にあっ
	201					27-25				-1227
tomato	1. 1	31.16		26.31		30.73		32.40		30.15
	maize	maize 5.84 tomato 3.98	maize5.84tomato12.97maize3.98	maize5.844.64tomato12.974.64maize3.983.02	maize5.844.64tomato12.9725.15maize3.983.02	maize5.844.644.64tomato12.9725.15maize3.983.023.87	maize 5.84 4.64 4.64 4.64 tomato 12.97 25.15 10.46 maize 3.98 3.02 3.87	maize5.844.644.644.645.66tomato12.9725.1510.4610.46maize3.983.023.873.873.29	maize 5.84 4.64 4.64 4.64 5.66 maize 5.84 4.64 4.64 5.66 27.54 tomato 12.97 25.15 10.46 27.54 maize 3.98 3.02 3.87 3.87 3.29	maize 5.84 4.64 4.64 4.64 6.64 5.66 6.64 5.63 tomato 12.97 25.15 10.46 10.46 27.54 27.54 maize 3.98 3.02 3.87 3.87 3.29 3.29 2.39



Profitability

System	Net Present Value (\$)	Returns to Land (/\$/ac/year)	Profitability as % of Conventional System
Conventional	8278	307	
Organic, No Premium	1981	73	24%
Organic, Declining Premium	4315	160	52%
Organic, Premium	5607	623	203%



Soil Carbon Accumulation (over 9 years)

Profitability & Increased Soil C

Case Study Conclusions (Preliminary)

- Stocks of Soil Carbon Can Be Increased in California, but the Amounts Will Depend on:
 - climatic conditions
 - management strategy
 - product mix
 - soil type
- Changes in Product Mix and Crop Management Strategies Can Increase Soil Carbon
 - Such Changes Can Be Costly to Farmers, and Yields and Profits May Decline
- Soil Carbon-Profitability Trade-Offs – Field 74 Study Exhibited Trade-Offs
- Soil Carbon-Profitability Synergies
 - LTRAS Tomato/Maize Study Exhibited Synergies
 - These depended greatly on price the premiums

Policy Implications

- Paying Farmers to Sequester Carbon Could Be Expensive
- Payment schemes would have to address local heterogeneity in soil and climate conditions
- Soil Carbon Pools Have Maxima and Sequestered Carbon Can Be Quickly Lost

 Payment schemes need to take account of this
- Not All Increases in Soil Carbon Are 'Sequestered'
 - Out-of-system inputs can matter greatly
 - Perhaps these 'imports' should also be paid for under incentive schemes

Implications for Research

- We Need to Know Much More About Carbon
 Dynamics in California Soils
 - Product mixes
 - Soil management practices
 - Soil types
 - Limits to and stability of carbon pools
- We Need to Know More About the Effects of Different Tillage and Residue Management Strategies on:
 - Yields
 - Production costs
 - Risk
 - Profits

Contracts for Soil Carbon Sequestration

- Standard Contracts
- Modifying Contracts to Meet the Needs of California Farmers
 - Duration
 - Up-Front costs
 - Escrow accounts
 - Monitoring
 - Within-contract changes in
 - Product mix
 - Production technology

• THANKS!

• WHAT ARE YOUR VIEWS?